mixpoissonreg
Objects.R/2_diagnostic_functions.R
summary.mixpoissonreg.Rd
Function providing a summary of results related to mixed Poisson regression models.
# S3 method for mixpoissonreg summary(object, ...)
object | an object of class "mixpoissonreg" containing results from the fitted model. |
---|---|
... | further arguments passed to or from other methods. |
An object of class summary_mixpoissonreg
containing several
informations of a mixpoissonreg object.
plot.mixpoissonreg
, autoplot.mixpoissonreg
,
local_influence_plot.mixpoissonreg
, local_influence_autoplot.mixpoissonreg
# \donttest{ data("Attendance", package = "mixpoissonreg") daysabs_fit <- mixpoissonreg(daysabs ~ gender + math + prog | gender + math + prog, data = Attendance) summary(daysabs_fit)#> #> Negative Binomial Regression - Expectation-Maximization Algorithm #> #> Call: #> mixpoissonreg(formula = daysabs ~ gender + math + prog | gender + #> math + prog, data = Attendance) #> #> #> Pearson residuals: #> RSS Min 1Q Median 3Q Max #> 322.0142 -1.1751 -0.6992 -0.3600 0.3014 4.7178 #> #> Coefficients modeling the mean (with link): #> Estimate Std.error z-value Pr(>|z|) #> (Intercept) 2.746123 0.147412 18.629 < 2e-16 *** #> gendermale -0.245113 0.117967 -2.078 0.03773 * #> math -0.006617 0.002317 -2.856 0.00429 ** #> progAcademic -0.425983 0.132144 -3.224 0.00127 ** #> progVocational -1.269755 0.174444 -7.279 3.37e-13 *** #> #> Coefficients modeling the precision (with link): #> Estimate Std.error z-value Pr(>|z|) #> (Intercept) 1.414227 0.343243 4.120 3.79e-05 *** #> gendermale -0.208397 0.203692 -1.023 0.306262 #> math -0.005123 0.004181 -1.225 0.220458 #> progAcademic -1.084418 0.305479 -3.550 0.000385 *** #> progVocational -1.422051 0.343812 -4.136 3.53e-05 *** #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 #> #> Efron's pseudo R-squared: 0.1860886 #> Number of iterations of the EM algorithm = 11daysabs_fit_ml <- mixpoissonregML(daysabs ~ gender + math + prog | gender + math + prog, data = Attendance) summary(daysabs_fit_ml)#> #> Negative Binomial Regression - Maximum-Likelihood Estimation #> #> Call: #> mixpoissonregML(formula = daysabs ~ gender + math + prog | gender + #> math + prog, data = Attendance) #> #> #> Pearson residuals: #> RSS Min 1Q Median 3Q Max #> 322.0172 -1.1751 -0.6992 -0.3600 0.3014 4.7178 #> #> Coefficients modeling the mean (with link): #> Estimate Std.error z-value Pr(>|z|) #> (Intercept) 2.746123 0.147412 18.629 < 2e-16 *** #> gendermale -0.245113 0.117967 -2.078 0.03773 * #> math -0.006617 0.002317 -2.856 0.00429 ** #> progAcademic -0.425983 0.132144 -3.224 0.00127 ** #> progVocational -1.269755 0.174444 -7.279 3.37e-13 *** #> #> Coefficients modeling the precision (with link): #> Estimate Std.error z-value Pr(>|z|) #> (Intercept) 1.414227 0.343243 4.120 3.79e-05 *** #> gendermale -0.208397 0.203692 -1.023 0.306262 #> math -0.005123 0.004181 -1.225 0.220457 #> progAcademic -1.084418 0.305479 -3.550 0.000385 *** #> progVocational -1.422051 0.343811 -4.136 3.53e-05 *** #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 #> #> Efron's pseudo R-squared: 0.1860887 #> Number of function calls by 'optim' = 4#> #> Negative Binomial Regression - Expectation-Maximization Algorithm #> #> Call: #> mixpoissonreg(formula = daysabs ~ prog, data = Attendance) #> #> #> Pearson residuals: #> RSS Min 1Q Median 3Q Max #> 340.4808 -0.9371 -0.6885 -0.2614 0.4086 5.2215 #> #> Coefficients modeling the mean (with link): #> Estimate Std.error z-value Pr(>|z|) #> (Intercept) 2.3656 0.1650 14.341 < 2e-16 *** #> progAcademic -0.4291 0.1845 -2.326 0.02 * #> progVocational -1.3824 0.2000 -6.912 4.78e-12 *** #> #> Coefficients modeling the precision (with link): #> Estimate Std.error z-value Pr(>|z|) #> (Intercept) 1.0056 0.1023 9.832 <2e-16 *** #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 #> #> Efron's pseudo R-squared: 0.1415831 #> Number of iterations of the EM algorithm = 1